[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, Xiaoqiang Zheng, and Google Brain. Tensorflow: A system for largescale machine learning. 2017 IEEE Radar Conference, RadarConf 2017, pages 1222–1227, 2017.
[2] Kumar Abhishek, Maheshwari Prasad Singh, Saswata Ghosh, and Abhishek Anand. Weather forecasting model using artificial neural network. Procedia Technology, 4:311–318, 2012.
[3] Ravi Aggarwal, Viknesh Sounderajah, Guy Martin, Daniel S.W. Ting, Alan Karthikesalingam, Dominic King, Hutan Ashrafian, and Ara Darzi. Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. npj Digital Medicine, 4, 12 2021.
[4] Valentin Amrhein, Sander Greenland, and Blake McShane. Retire statistical significance. Nature, 567:305–307, 2019.
[5] Andres Anaya-Isaza, Leonel Mera-Jimenez, and Martha ZequeraDiaz. An overview of deep learning in medical imaging. Informatics in Medicine Unlocked, 26, 1 2021.
[6] Daniel Andreasen, Koen Van Leemput, Rasmus H. Hansen, Jon A.L. Andersen, and Jens M. Edmund. Patch-based generation of a pseudo ct from conventional mri sequences for mri-only radiotherapy of the brain. Medical Physics, 42:1596–1605, 2015.
[7] Alex M. Andrew. Multiple View Geometry in Computer Vision, volume 30. 2001. 79
[8] Yannis Assael, Thea Sommerschield, Brendan Shillingford, Mahyar Bordbar, John Pavlopoulos, Marita Chatzipanagiotou, Ion Androutsopoulos, Jonathan Prag, and Nando de Freitas. Restoring and attributing ancient texts using deep neural networks. Nature, 603:280– 283, 2022.
[9] Shiva Ayoubi, Elizabeth Johansson, Niklas Toorell, Olle Bergman, Lotta Fredholm, Gabor Hont, Per Ljungman, Eva Munck-Wikland, Hareth Nahi, and Jan Zedenius. Cancer i siffror 2018- cancerfonden och socialstyrelsen i samarbete, 2018.
[10] Fabian Balsiger, Alain Jungo, Naren Akash R J, Jianan Chen, Ivan Ezhov, Shengnan Liu, Jun Ma, Johannes C. Paetzold, Vishva Saravanan R, Anjany Sekuboyina, Suprosanna Shit, Yannick Suter, Moshood Yekini, Guodong Zeng, and Markus Rempfler. The miccai hackathon on reproducibility, diversity, and selection of papers at the miccai conference. 2021.
[11] Hana Baroudi, Kristy K. Brock, Wenhua Cao, Xinru Chen, Caroline Chung, Laurence E. Court, Mohammad D. El Basha, Maguy Farhat, Skylar Gay, Mary P. Gronberg, Aashish Chandra Gupta, Soleil Hernandez, Kai Huang, David A. Jaffray, Rebecca Lim, Barbara Marquez, Kelly Nealon, Tucker J. Netherton, Callistus M. Nguyen, Brandon Reber, Dong Joo Rhee, Ramon M. Salazar, Mihir D. Shanker, Carlos Sjogreen, McKell Woodland, Jinzhong Yang, Cenji Yu, and Yao Zhao. Automated contouring and planning in radiation therapy: What is ‘clinically acceptable’? Diagnostics, 13, 2 2023.
[12] Andrew L. Beam, Arjun K. Manrai, and Marzyeh Ghassemi. Challenges to the reproducibility of machine learning models in health care. JAMA – Journal of the American Medical Association, 323:305–306, 2020.
[13] Jose Bernal, Kaisar Kushibar, Daniel S. Asfaw, Sergi Valverde, Arnau Oliver, Robert Marti, and Xavier Llado. Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review. Artificial Intelligence in Medicine, 95:64–81, 2019.
[14] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu 80 Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. Gpt-neox-20b: An open-source autoregressive language model. arXiv, 4 2022.
[15] Jorge Zavala Bojorquez, Stephanie Bricq, Clement Acquitter, Fran¸cois Brunotte, Paul M. Walker, and Alain Lalande. What are normal relaxation times of tissues at 3t? Magnetic Resonance Imaging, 35:69–80, 2017.
[16] Marion Boulanger, Jean Claude Nunes, Hilda Chourak, Axel Largent, Safaa Tahri, Oscar Acosta, R. De Crevoisier, Caroline Lafond, and Anais Barateau. Deep learning methods to generate synthetic ct from mri in radiotherapy: A literature review. Physica Medica, 89:265–281, 2021.
[17] Xavier Bouthillier, Cesar Laurent, and Pascal Vincent. Unreproducible research is reproducible. 36th International Conference on Machine Learning, ICML 2019, 2019-June:1150–1159, 2019.
[18] Marcus J. Brown, Laura A. Hutchinson, Michael J. Rainbow, Kevin J. Deluzio, and Alan R. De Asha. A comparison of selfselected walking speeds and walking speed variability when data are collected during repeated discrete trials and during continuous walking. Journal of Applied Biomechanics, 33:384–387, 2017.
[19] Varun H Buch, Ifran Ahmed, and Mahiben Maruthappu. Artificial intelligence in medicine: current trends and future possibilities. pages 2016–2017, 2018.
[20] Diogo V. Carvalho, Eduardo M. Pereira, and Jaime S. Cardoso. Machine learning interpretability: A survey on methods and metrics. Electronics (Switzerland), 8, 8 2019.
[21] Simone Castagno and Mohamed Khalifa. Perceptions of artificial intelligence among healthcare staff: A qualitative survey study. Frontiers in Artificial Intelligence, 3, 10 2020.
[22] Apurba Chakraborty, Saptarsi Ghosh, Partha Mukhopadhyay, Syed Mukulika Dinara, Ankush Bag, Mihir K Mahata, Rahul Kumar, Subhashis Das, Jana Sanjay, Shubhankar Majumdar, and Dhrubes Biswas. Trapping effect analysis of algan/ingan/gan heterostructure by conductance frequency measurement. MRS Proceedings, XXXIII:81–87, 2014. 81
[23] Jon F. Claerbout and Martin Karrenbach. Electronic documents give reproducible research a new meaning. 1992 SEG Annual Meeting, pages 601–604, 1992.
[24] Tahani A. Daghistani, Radwa Elshawi, Sherif Sakr, Amjad M. Ahmed, Abdullah Al-Thwayee, and Mouaz H. Al-Mallah. Predictors of in-hospital length of stay among cardiac patients: A machine learning approach. International Journal of Cardiology, 288:140– 147, 8 2019.
[25] Salman Ul Hassan Dar, Muzaffer Ozbey, Ahmet Burak Catli, and Tolga Cukur. A transfer-learning approach for accelerated mri using deep neural networks. Magnetic Resonance in Medicine, 84:663–685, 2020.
[26] Jeffrey Dean. A golden decade of deep learning: Computing systems and applications. Daedalus, 151:58–74, 2022.
[27] Jonas Denck, Jens Guehring, Andreas Maier, and Eva Rothgang. Mr-contrast-aware image-to-image translations with generative adversarial networks. International Journal of Computer Assisted Radiology and Surgery, 16:2069–2078, 2021.
[28] Li Deng, Geoffrey Hinton, and Brian Kingsbury. New types of deep neural network learning for speech recognition and related applications: An overview. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing – Proceedings, pages 8599– 8603, 2013.
[29] Rahul C. Deo. Machine learning in medicine. Circulation, 132:1920– 1930, 11 2015.
[30] Prafulla Dhariwal, Openai, and Alex Nichol. Diffusion models beat gans on image synthesis. 35th Conference on Neural Information Processing Systems (NeurIPS 2021).
[31] Timothy Dozat. Incorporating nesterov momentum into adam. ICLR Workshop, pages 2013–2016, 2016.
[32] John C. Duchi, Peter L. Bartlett, and Martin J. Wainwright. Randomized smoothing for (parallel) stochastic optimization. Proceedings of the IEEE Conference on Decision and Control, 12:5442–5444, 2012. 82
[33] Deng Ping Fan, Ge Peng Ji, Tao Zhou, Geng Chen, Huazhu Fu, and Ling Shao. PraNet: Parallel Reverse Attention Network for Polyp Segmentation, volume 2882. Springer International Publishing, 2020.
[34] Ethan Fast and Eric Horvitz. Long-term trends in the public perception of artificial intelligence. Proceedings of the AAAI Conference on Artificial Intelligence, 2017.
[35] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Francisco J. Francisco, Julian Schrittwieser, Grzegorz Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature, 610:47–53, 2022.
[36] Jacques Ferlay, Isabelle Soerjomataram, Rajesh Dikshit, Sultan Eser, Colin Mathers, Marise Rebelo, Donald Maxwell Parkin, David Forman, and Freddie Bray. Cancer incidence and mortality worldwide: Sources, methods and major patterns in globocan 2012. International Journal of Cancer, 136:E359–E386, 2015.
[37] Lukas Fetty, Mikael Bylund, Peter Kuess, Tufve Nyholm, Dietmar Georg, and L Tommy. Stylegan latent space manipulation for medical image synthesis. IEEE Transactions on Medical Imaging.
[38] Lukas Fetty, Tommy Lofstedt, Gerd Heilemann, Hugo Furtado, Nicole Nesvacil, Tufve Nyholm, Dietmar Georg, and Peter Kuess. Investigating conditional gan performance with different generator architectures, an ensemble model, and different mr scanners for mrsct conversion. Physics in Medicine and Biology, 65, 2020.
[39] Kathleen Foody. Tech disputes at rittenhouse trial not new issue for courts. Associated Press News, 11 2021.
[40] Yarin Gal. Dropout as a bayesian approximation : Representing model uncertainty in deep learning. 48, 2016.
[41] Anders Garpebring. Contributions to quantitative dynamic contrast- enhanced mri. Umea University Medical Dissertations, 2011.
[42] Amir Gholami, Shashank Subramanian, Varun Shenoy, Naveen Humthani, Xiangyu Yue, Sicheng Zhao, Peter Jin, George Biros, and 83 Kurt Keutzer. A Novel Domain Adaptation Framework for Medical Image Segmentation. 2018.
[43] Biraja Ghoshal, Allan Tucker, Bal Sanghera, and Wai Lup Wong. Estimating uncertainty in deep learning for reporting confidence to clinicians in medical image segmentation and diseases detection. Computational Intelligence, 37:701–734, 2021.
[44] J. Willard Gibbs. Fourier’s series. Nature, 60:52, 1899.
[45] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. 2017.
[46] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the ACM, 63:139–144, 2020.
[47] Antonio Gulli. Title Page Deep Learning with Keras Implement neural networks with Keras on Theano and TensorFlow. 2017.
[48] Dinank Gupta, Michelle Kim, Karen A. Vineberg, and James M. Balter. Generation of synthetic ct images from mri for treatment planning and patient positioning using a 3-channel u-net trained on sagittal images. Frontiers in Oncology, 9:1–8, 2019.
[49] Xiao Han. Mr-based synthetic ct generation using a deep convolutional neural network method:. Medical Physics, 44:1408–1419, 2017.
[50] Yoseo Han, Leonard Sunwoo, and Jong Chul Ye. K-space deep learning for accelerated mri. IEEE Transactions on Medical Imaging, 39:377–386, 2020.
[51] Mattias Hedman, Per Nodbrant, and Kjell Bergfeldt. Svensk stralbehandling tappar mark. pages 1–25, 2020.
[52] Gerd Heilemann, Lukas Zimmermann, Raphael Schotola, Wolfgang Lechner, Marco Peer, Joachim Widder, Gregor Goldner, Dietmar Georg, and Peter Kuess. Generating deliverable dicom rt treatment plans for prostate vmat by predicting mlc motion sequences with an encoder-decoder network. Medical Physics, 2023.
[53] Nicholas Heller, Niranjan Sathianathen, Arveen Kalapara, Edward Walczak, Keenan Moore, Heather Kaluzniak, Joel Rosenberg, Paul Blake, Zachary Rengel, Makinna Oestreich, Joshua Dean, 84 Michael Tradewell, Aneri Shah, Resha Tejpaul, Zachary Edgerton, Matthew Peterson, Shaneabbas Raza, Subodh Regmi, Nikolaos Papanikolopoulos, and Christopher Weight. The kits19 challenge data: 300 kidney tumor cases with clinical context, ct semantic segmentations, and surgical outcomes. pages 1–13, 2019.
[54] Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, and Joelle Pineau. Towards the systematic reporting of the energy and carbon footprints of machine learning. Journal of Machine Learning Research, 21:1–43, 2020.
[55] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning: Lecture 6a, 2012.
[56] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets and problem solutions. International Journal of Uncertainty, Fuzziness and Knowldege-Based Systems, 6:107–116, 1998.
[57] Jiang Hsieh. Computed Tomography Principles, Design, Artifacts, and Recent Advances. Third edition, 2015.
[58] Shu Hui Hsu, Pamela DuPre, Qi Peng, and Wolfgang A. Tome. A technique to generate synthetic ct from mri for abdominal radiotherapy. Journal of Applied Clinical Medical Physics, 21:136–143, 2020.
[59] Xia Hu, Lingyang Chu, Jian Pei, Weiqing Liu, and Jiang Bian. Model complexity of deep learning: a survey. Knowledge and Information Systems, 63:2585–2619, 10 2021.
[60] Shih Cheng Huang, Anuj Pareek, Saeed Seyyedi, Imon Banerjee, and Matthew P. Lungren. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines, 12 2020.
[61] Mohammad Hussein, Ben J. M. Heijmen, Dirk Verellen, and Andrew Nisbet. Automation in intensity modulated radiotherapy treatment planning-a review of recent innovations. The British Journal of Radiology, 2018.
[62] Elisa Immonen, J. Wong, Mika Nieminen, Leena Kekkonen, Sara Roine, Sanna Tornroos, Luis Lanca, Frank Guan, and Eija Metsala. 85 The use of deep learning towards dose optimization in low-dose computed tomography: A scoping review. Radiography, 28:208–214, 2 2022.
[63] Fabian Isensee, Paul F. Jaeger, Simon A.A. Kohl, Jens Petersen, and Klaus H. Maier-Hein. nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods, 18:203–211, 2021.
[64] Colin Jacobs and Bram van Ginneken. Google’s lung cancer ai: a promising tool that needs further validation. Nature Reviews Clinical Oncology, 16:532–533, 2019.
[65] Luuk Jacobs, Stefano Mandija, Hongyan Liu, Cornelis A. T. van den Berg, Alessandro Sbrizzi, and Matteo Maspero. Generalizable synthetic mri with physics-informed convolutional networks. arXiv, pages 1–23, 2023.
[66] Emily Johnstone, Jonathan J. Wyatt, Ann M. Henry, Susan C. Short, David Sebag-Montefiore, Louise Murray, Charles G. Kelly, Hazel M. McCallum, and Richard Speight. Systematic review of synthetic computed tomography generation methodologies for use in magnetic resonance imaging–only radiation therapy. International Journal of Radiation Oncology Biology Physics, 100:199–217, 2018.
[67] Joakim Jonsson. Integration of mri into the radiotherapy workflow. Umea University Medical Dissertations, 2013.
[68] Joakim Jonsson, Tufve Nyholm, and Karin Soderkvist. The rationale for mr-only treatment planning for external radiotherapy. Clinical and Translational Radiation Oncology, 18:60–65, 2019.
[69] Deepa Joshi and Anikait Sabharwal. Artificial intelligence in healthcare. 2022.
[70] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A.A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, 86 and Demis Hassabis. Highly accurate protein structure prediction with alphafold. Nature, 596:583–589, 2021.
[71] Misha P.T. Kaandorp, Sebastiano Barbieri, Remy Klaassen, Hanneke W.M. van Laarhoven, Hans Crezee, Peter T. While, Aart J. Nederveen, and Oliver J. Gurney-Champion. Improved unsupervised physics-informed deep learning for intravoxel incoherent motion modeling and evaluation in pancreatic cancer patients. Magnetic Resonance in Medicine, 86:2250–2265, 2021.
[72] Emanuel Kanal and Michael F. Tweedle. Residual or retained gadolinium: Practical implications for radiologists and our patients. Radiology, 275:630–634, 2015.
[73] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43:4217–4228, 2021.
[74] Hoel Kervadec, Houda Bahig, Laurent Letourneau-Guillon, Jose Dolz, and Ismail Ben Ayed. Beyond pixel-wise supervision for segmentation: A few global shape descriptors might be surprisingly good! Proceedings of Machine Learning Research, pages 1–16, 2021.
[75] Hoel Kervadec and Marleen De Bruijne. On the dice loss variants and sub-patching. Proceedings of Machine Learning Research 2023, 2023.
[76] Rehan Ahmed Khan, Masood Jawaid, Aymen Rehan Khan, and Madiha Sajjad. Chatgpt – reshaping medical education and clinical management. volume 584 IFIP, pages 373–383. Springer, 2023.
[77] Lukasz Kidzinski, Bryan Yang, Jennifer L. Hicks, Apoorva Rajagopal, Scott L. Delp, and Michael H. Schwartz. Deep neural networks enable quantitative movement analysis using single-camera videos. Nature Communications, 11:1–10, 2020.
[78] Boah Kim, Dong Hwan Kim, Seong Ho Park, Jieun Kim, June Goo Lee, and Jong Chul Ye. Cyclemorph: Cycle consistent unsupervised deformable image registration. Medical Image Analysis, 71:102036, 2021.
[79] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015 – Conference Track Proceedings, pages 1–15, 2015. 87
[80] Diederik P. Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization trick. Advances in Neural Information Processing Systems, pages 2575–2583, 2015.
[81] Florian Knoll, Kerstin Hammernik, Erich Kobler, Thomas Pock, Michael P. Recht, and Daniel K. Sodickson. Assessment of the generalization of learned image reconstruction and the potential for transfer learning. Magnetic Resonance in Medicine, 81:116–128, 2019.
[82] Florian Knoll, Jure Zbontar, Anuroop Sriram, Matthew J. Muckley, Mary Bruno, Aarn Defazio, Marc Parente, Krzysztof J. Geras, Je Katsnelsn, Hersh Chandarana, Zizhao Zhang, Michal Drzdzalv, Adriana Rmer, Michael Rabbat, Pascal Vincent, James Pinkertn, Duo Wang, Nafissa Yakubova, Erich Owens, C. Lawrence Zitnick, Michael P. Recht, Daniel K. Sodickson, and Yvonne W. Lui. Fastmri: A publicly available raw k-space and dicom dataset of knee images for accelerated mr image reconstruction using machine learning. Radiology: Artificial Intelligence, 2, 2020.
[83] Marie E. Korsholm, Line W. Waring, and Jens M. Edmund. A criterion for the reliable use of mri-only radiotherapy. Radiation Oncology, 9:1–7, 2014.
[84] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60:84–90, 2017.
[85] Lily Kuo. China brings in mandatory facial recognition for mobile phone users. The Guardian, pages 1–6, 12 2019.
[86] Quoc V Le, Marc Aurelio Ranzato, Matthieu Devin, Greg S Corrado, and Andrew Y Ng. Building high-level features using large scale unsupervised learning. Proceedings of the 29th International Conference on Machine Learning, 2012.
[87] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86:2278–2323, 1998.
[88] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe Shi. Photo-realistic single image super-resolution using a generative adversarial network. Proceedings – 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua:105–114, 2017. 88
[89] Juyoung Lee, Yoseob Han, Jae Kyun Ryu, Jang Yeon Park, and Jong Chul Ye. k-space deep learning for reference-free epi ghost correction. Magnetic Resonance in Medicine, 82:2299–2313, 2019.
[90] Claude Lemarechal. Cauchy and the gradient method. Documenta Mathematica, ISMP:251–254, 2012.
[91] Minna Lerner, Joakim Medin, Christian Jamtheim Gustafsson, Sara Alkner, Carl Siversson, and Lars E. Olsson. Clinical validation of a commercially available deep learning software for synthetic ct generation for brain. Radiation Oncology, 16:1–11, 2021.
[92] Chongxuan Li, Kun Xu, Jun Zhu, Jiashuo Liu, and Bo Zhang. Triple Generative Adversarial Networks, volume 44. 2022.
[93] Johann Li, Guangming Zhu, Cong Hua, Mingtao Feng, BasheerBennamoun, Ping Li, Xiaoyuan Lu, Juan Song, Peiyi Shen, Xu Xu, Lin Mei, Liang Zhang, Syed Afaq Ali Shah, and Mohammed Bennamoun. A systematic collection of medical image datasets for deep learning. arXiv, 2021.
[94] Alexander Liu, Rohan S. Wijesurendra, Joanna M. Liu, John C. Forfar, Keith M. Channon, Michael Jerosch-Herold, Stefan K. Piechnik, Stefan Neubauer, Rajesh K. Kharbanda, and Vanessa M. Ferreira. Diagnosis of microvascular angina using cardiac magnetic resonance. Journal of the American College of Cardiology, 71:969–979, 2018.
[95] Victoria Liu and John Pauly. Multi-task accelerated mr reconstruction schemes for jointly training multiple contrasts. NeurIPS 2021 Workshop on Deep Learning and Inverse Problems, 2021.
[96] Xiaoxuan Liu, Livia Faes, Aditya U. Kale, Siegfried K. Wagner, Dun Jack Fu, Alice Bruynseels, Thushika Mahendiran, Gabriella Moraes, Mohith Shamdas, Christoph Kern, Joseph R. Ledsam, Martin K. Schmid, Konstantinos Balaskas, Eric J. Topol, Lucas M. Bachmann, Pearse A. Keane, and Alastair K. Denniston. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. The Lancet Digital Health, 1:e271–e297, 10 2019.
[97] Antony J Lomax, Thomas Bortfeld, Gudrun Goitein, Juergen Debus, Christine Dykstra, Pierre-Alain Tercier, Philippe A Coucke, and Rene O Mirimanoff. A treatment planning inter-comparison of proton and intensity modulated photon radiotherapy. Radiotherapy and Oncology, 1999. 89
[98] Alexander Selvikvag Lundervold and Arvid Lundervold. An overview of deep learning in medical imaging focusing on mri. Zeitschrift fur Medizinische Physik, 29:102–127, 2019.
[99] Qing Lyu, Hongming Shan, Cole Steber, Corbin Helis, Chris Whitlow, Michael Chan, and Ge Wang. Multi-contrast super-resolution mri through a progressive network. IEEE Transactions on Medical Imaging, 39:2738–2749, 2020.
[100] Qing Lyu and Ge Wang. Conversion between ct and mri images using diffusion and score-matching models. arXiv, 18:1–10, 2022.
[101] Wesley J. Maddox, Timur Garipov, Izmailov, Dmitry Vetrov, and Andrew Gordon Wilson. A simple baseline for bayesian uncertainty in deep learning. Advances in Neural Information Processing Systems, 32:1–12, 2019.
[102] Joseph G. Makin, David A. Moses, and Edward F. Chang. Machine translation of cortical activity to text with an encoder–decoder framework. Nature Neuroscience, 23:575–582, 2020.
[103] Allister Mason, James Rioux, Sharon E. Clarke, Andreu Costa, Matthias Schmidt, Valerie Keough, Thien Huynh, and Steven Beyea. Comparison of objective image quality metrics to expert radiologists’ scoring of diagnostic quality of mr images. IEEE Transactions on Medical Imaging, 39:1064–1072, 2020.
[104] Matteo Maspero, Mark H.F. Savenije, Anna M. Dinkla, Peter R. Seevinck, Martijn P.W. Intven, Ina M. Jurgenliemk-Schulz, Linda G.W. Kerkmeijer, and Cornelis A.T. Van Den Berg. Dose evaluation of fast synthetic-ct generation using a generative adversarial network for general pelvis mr-only radiotherapy. Physics in Medicine and Biology, 63, 2018.
[105] Donald W. McRobbie, Elizabeth A. Moore, and Martin J. Graves. MRI from picture to proton. Cambridge University Press, 2017.
[106] LR Medsker, DC LC Jain, and Boca Raton London New York Washington. Recurrent neural networks, 2001.
[107] Gabor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in neural language models. 6th International Conference on Learning Representations, ICLR 2018 – Conference Track Proceedings, pages 1–10, 2018. 90
[108] Bjoern H. Menze, Andras Jakab, Stefan Bauer, Jayashree KalpathyCramer, Keyvan Farahani, Justin Kirby, Yuliya Burren, Nicole Porz, Johannes Slotboom, Roland Wiest, Levente Lanczi, Elizabeth Gerstner, Marc Andre Weber, Tal Arbel, Brian B. Avants, Nicholas Ayache, Patricia Buendia, D. Louis Collins, Nicolas Cordier, Jason J. Corso, Antonio Criminisi, Tilak Das, Herve Delingette, C¸ a˘gatay Demiralp, Christopher R. Durst, Michel Dojat, Senan Doyle, Joana Festa, Florence Forbes, Ezequiel Geremia, Ben Glocker, Polina Golland, Xiaotao Guo, Andac Hamamci, Khan M. Iftekharuddin, Raj Jena, Nigel M. John, Ender Konukoglu, Danial Lashkari, Jose Antonio Mariz, Raphael Meier, Sergio Pereira, Doina Precup, Stephen J. Price, Tammy Riklin Raviv, Syed M.S. Reza, Michael Ryan, Duygu Sarikaya, Lawrence Schwartz, Hoo Chang Shin, Jamie Shotton, Carlos A. Silva, Nuno Sousa, Nagesh K. Subbanna, Gabor Szekely, Thomas J. Taylor, Owen M. Thomas, Nicholas J. Tustison, Gozde Unal, Flor Vasseur, Max Wintermark, Dong Hye Ye, Liang Zhao, Binsheng Zhao, Darko Zikic, Marcel Prastawa, Mauricio Reyes, and Koen Van Leemput. The multimodal brain tumor image segmentation benchmark (brats). IEEE Transactions on Medical Imaging, 34:1993–2024, 2015.
[109] Mana Moassefi, Pouria Rouzrokh, Gian Marco Conte, Sanaz Vahdati, Tianyuan Fu, Aylin Tahmasebi, Mira Younis, Keyvan Farahani, Amilcare Gentili, Timothy Kline, Felipe C. Kitamura, Yuankai Huo, Shiba Kuanar, Khaled Younis, Bradley J. Erickson, and Shahriar Faghani. Reproducibility of deep learning algorithms developed for medical imaging analysis: A systematic review. Journal of Digital Imaging, 2023.
[110] Akash Kumar Mohankumar, Preksha Nema, Sharan Narasimhan, Mitesh M. Khapra, Balaji Vasan Srinivasan, and Balaraman Ravindran. Towards transparent and explainable attention models. Proceedings of the Annual Meeting of the Association for Computational Linguistics, pages 4206–4216, 2020.
[111] Matthew J. Muckley, Bruno Riemenschneider, Alireza Radmanesh, Sunwoo Kim, Geunu Jeong, Jingyu Ko, Yohan Jun, Hyungseob Shin, Dosik Hwang, Mahmoud Mostapha, Simon Arberet, Dominik Nickel, Zaccharie Ramzi, Philippe Ciuciu, Jean Luc Starck, Jonas Teuwen, Dimitrios Karkalousos, Chaoping Zhang, Anuroop Sriram, Zhengnan Huang, Nafissa Yakubova, Yvonne W. Lui, and Florian Knoll. Results of the 2020 fastmri challenge for machine learning 91 mr image reconstruction. IEEE Transactions on Medical Imaging, 40:2306–2317, 2021.
[112] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. Exploring generalization in deep learning. Advances in Neural Information Processing Systems, 2017-Decem:5948–5957, 2017.
[113] Erik Nilsson. Super-resolution for fast multi-contrast magnetic resonance imaging. 2019.
[114] Tufve Nyholm and Joakim Jonsson. Counterpoint: Opportunities and challenges of a magnetic resonance imaging-only radiotherapy work flow. Seminars in Radiation Oncology, 24:175–180, 2014.
[115] Tufve Nyholm, Morgan Nyberg, Magnus G. Karlsson, and Mikael Karlsson. Systematisation of spatial uncertainties for comparison between a mr and a ct-based radiotherapy workflow for prostate treatments. Radiation Oncology, 4, 11 2009.
[116] Tufve Nyholm, Stina Svensson, Sebastian Andersson, Joakim Jonsson, Maja Sohlin, Christian Gustafsson, Elisabeth Kjellen, Karin Soderstrom, Per Albertsson, Lennart Blomqvist, Bjorn Zackrisson, Lars E. Olsson, and Adalsteinn Gunnlaugsson. Mr and ct data with multiobserver delineations of organs in the pelvic area-part of the gold atlas project:. Medical Physics, 45:1295–1300, 2018.
[117] Tomoki Omori, Yusuke Isono, Katsuhiko Kondo, Yusuke Akamine, and Shouhei Kidera. K-space decomposition based super-resolution three-dimensional imaging method for millimeter wave radar. IEEE National Radar Conference – Proceedings, 2020-Septe, 2020.
[118] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 32, 2019.
[119] Roger Penrose. The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics. Oxford University Press, 2016. 92
[120] Emilia Persson. Validation and Clinical Implementation of an MRIonly Prostate Cancer Radiotherapy Workflow. 2020.
[121] Walter H.L. Pinaya, Petru Daniel Tudosiu, Jessica Dafflon, Pedro F. Da Costa, Virginia Fernandez, Parashkev Nachev, Sebastien Ourselin, and M. Jorge Cardoso. Brain imaging generation with latent diffusion models. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13609 LNCS:117–126, 2022.
[122] Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Lariviere, Alina Beygelzimer, Florence d’Alche Buc, Emily Fox, and Hugo Larochelle. Improving reproducibility in machine learning research (a report from the neurips 2019 reproducibility program). Journal of Machine Learning Research, 22:1–20, 2021.
[123] Gasper Podobnik, Primoz Strojan, Primoz Peterlin, Bulat Ibragimov, and Tomaz Vrtovec. Han-seg: The head and neck organ-at-risk ct and mr segmentation dataset. Medical Physics, 50:1917–1927, 3 2023.
[124] Guillermo Valle Perez, Ard A. Louis, and Chico Q. Camargo. Deep learning generalizes because the parameter-function map is biased towards simple functions. 7th International Conference on Learning Representations, ICLR 2019, pages 1–35, 2019.
[125] Haoming Qiu, Alan W. Katz, and Michael T. Milano. Oligometastases to the liver: Predicting outcomes based upon radiation sensitivity. Journal of Thoracic Disease, 8, 2016.
[126] Edward Raff. A step toward quantifying independently reproducible machine learning research. Advances in Neural Information Processing Systems, 32, 2019.
[127] Maithra Raghu and Eric Schmidt. A survey of deep learning for scientific discovery. pages 1–48, 2020.
[128] Alvin Rajkomar, Jeffrey Dean, and Isaac Kohane. Machine learning in medicine. New England Journal of Medicine, 380:1347–1358, 4 2019.
[129] Felix Renard, Soulaimane Guedria, Noel De Palma, and Nicolas Vuillerme. Variability and reproducibility in deep learning for medical image segmentation. Scientific Reports, 10:1–16, 2020. 93
[130] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i trust you?” explaining the predictions of any classifier. NAACL-HLT 2016 – 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Demonstrations Session, pages 97–101, 2016.
[131] Peter L. Roberson, P. William McLaughlin, Vrinda Narayana, Sara Troyer, George V. Hixson, and Marc L. Kessler. Use and uncertainties of mutual information for computed tomography/magnetic resonance (ct/mr) registration post permanent implant of the prostate. Medical Physics, 32:473–482, 2005.
[132] Theo Ruers, Frits Van Coevorden, Cornelis J.A. Punt, Jean Pierre E.N. Pierie, Inne Borel-Rinkes, Jonathan A. Ledermann, Graeme Poston, Wolf Bechstein, Marie Ange Lentz, Murielle Mauer, Gunnar Folprecht, Eric Van Cutsem, Michel Ducreux, Bernard Nordlinger, Ambroise Pare, V. J. Verwaal, T. Gruenberger, J. Klaase, S. Falk, J. Wals, R. L. Jansen, P. Lindner, S. Mulier, K. Bosscha, D. Jaeck, J. P. Arnaud, D. Smith, D. Sherlock, B. Ammori, A. Gillams, M. El-Serafi, B. Glimelius, and P. Hellman. Local treatment of unresectable colorectal liver metastases: Results of a randomized phase ii trial. Journal of the National Cancer Institute, 109:1–10, 2017.
[133] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal representations by error propagation. Readings in Cognitive Science: A Perspective from Psychology and Artificial Intelligence, pages 399–421, 2013.
[134] David Ruppert. The elements of statistical learning: Data mining, inference, and prediction. Journal of the American Statistical Association, 99:567–567, 2004.
[135] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge. arXiv, 9 2014.
[136] Sheeba Samuel and Daniel Mietchen. Computational reproducibility of jupyter notebooks from biomedical publications. arXiv, 8 2023.
[137] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normalization help optimization? Advances 94 in Neural Information Processing Systems, 2018-Decem:2483–2493, 2018.
[138] Warren S. Sarle. Neural networks faq’s, 1997.
[139] Peter Savadjiev, Jaron Chong, Anthony Dohan, Maria Vakalopoulou, Caroline Reinhold, Nikos Paragios, and Benoit Gallix. Demystification of ai-driven medical image interpretation: past, present and future. European Radiology, 29:1616–1624, 2019.
[140] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. An introduction to quantum machine learning. Contemporary Physics, 56:172–185, 2015.
[141] D. Sculley, Jasper Snoek, Ali Rahimi, and Alex Wiltschko. Winner’s curse? on pace, progress, and empirical rigor. 6th International Conference on Learning Representations, ICLR 2018 – Workshop Track Proceedings, pages 1–4, 2018.
[142] Kenneth P. Seastedt, Patrick Schwab, Zach O’Brien, Edith Wakida, Karen Herrera, Portia Grace F. Marcelo, Louis Agha-Mir-Salim, Xavier Borrat Frigola, Emily Boardman Ndulue, Alvin Marcelo, and Leo Anthony Celi. Global healthcare fairness: We should be sharing more, not less, data. PLOS Digital Health, 1:e0000102, 10 2022.
[143] Negin Shafaf and Hamed Malek. Applications of machine learning approaches in emer-gency medicine; a review article. Archives of Academic Emergency Medicine, 7, 2019.
[144] Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data augmentation for deep learning. Journal of Big Data, 6, 2019.
[145] Li Qi Shu, Yi Kan Sun, Lin Hua Tan, Qiang Shu, and Anthony C. Chang. Application of artificial intelligence in pediatrics: past, present and future. World Journal of Pediatrics, 15:105–108, 4 2019.
[146] Jenni A.M. Sidey-Gibbons and Chris J. Sidey-Gibbons. Machine learning in medicine: a practical introduction. BMC Medical Research Methodology, 19, 3 2019.
[147] Amitojdeep Singh, Sourya Sengupta, and Vasudevan Lakshminarayanan. Explainable deep learning models in medical image analysis. Journal of Imaging, 6, 6 2020. 95
[148] Bharat Singh, Mahyar Najibi, and Larry S. Davis. Sniper: Efficient multi-scale training. Advances in Neural Information Processing Systems, 2018-Decem:9310–9320, 2018.
[149] Nalini M Singh, Neel Dey, Malte Hoffmann, Bruce Fischl, Elfar Adalsteinsson, Robert Frost, Adrian V Dalca, and Polina Golland. Data consistent deep rigid mri motion correction, 2023.
[150] Nalini M Singh and Juan Eugenio Iglesias. Joint frequency and image space learning for mri reconstruction and analysis mnist – image brains – image mnist – frequency brains – frequency. Journal of Machine Learning for Biomedical Imaging., 018:1–28, 2022.
[151] John G. Sled, Alex P. Zijdenbos, and Alan C. Evans. A nonparametric method for automatic correction of intensity nonuniformity in mri data. IEEE Transactions on Medical Imaging, 17:87–97, 1998.
[152] Rewa R Sood, Wei Shao, Christian Kunder, Nikola C Teslovich, Jeffrey B Wang, Simon J C Soerensen, Nikhil Madhuripan, Anugayathri Jawahar, James D Brooks, Pejman Ghanouni, Richard E Fan, Geoffrey A Sonn, and Mirabela Rusu. 3d registration of pre-surgical prostate mri and histopathology images via super-resolution volume reconstruction. Medical Image Analysis, 69:101957, 2021.
[153] Greg J. Stanisz, Ewa E. Odrobina, Joseph Pun, Michael Escaravage, Simon J. Graham, Michael J. Bronskill, and R. Mark Henkelman. T1, t2 relaxation and magnetization transfer in tissue at 3t. Magnetic Resonance in Medicine, 54:507–512, 2005.
[154] Cecilia Summers and Michael J. Dinneen. Four things everyone should know to improve batch normalization. Conference Proceedings at ICLR 2020, 2019.
[155] Hyuna Sung, Jacques Ferlay, Rebecca L. Siegel, Mathieu Laversanne, Isabelle Soerjomataram, Ahmedin Jemal, and Freddie Bray. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71:209–249, 2021.
[156] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization and momentum in deep learning. 30th International Conference on Machine Learning, ICML 2013, pages 2176–2184, 2013. 96
[157] Kenji Suzuki. Overview of deep learning in medical imaging. Radiological Physics and Technology, 10:257–273, 2017.
[158] Zsolt Szántó, Balázs Bánáti, and Tamás Zombori. Enhancing Medication Event Classification with Syntax Parsing and Adversarial Learning, pages 114–124. 2023.
[159] Nicholas J. Tustison, Brian B. Avants, Philip A. Cook, Yuanjie Zheng, Alexander Egan, Paul A. Yushkevich, and James C. Gee. N4itk: Improved n3 bias correction. IEEE Transactions on Medical Imaging, 29:1310–1320, 2010.
[160] Nicholas J. Tustison and James Gee. N4itk: Nick’s n3 itk implementation for mri bias field correction. The Insight Journal, pages 1–8, 2022.
[161] Kenneth Ulin, Marcia M. Urie, and Joel M. Cherlow. Results of a multi-institutional benchmark test for cranial ct/mr image registration. International Journal of Radiation Oncology Biology Physics, 77:1584–1589, 2010.
[162] Rajat Vajpayee, Vismay Agrawal, and Ganapathy Krishnamurthi. Structurally-constrained optical-flow-guided adversarial generation of synthetic ct for mr-only radiotherapy treatment planning. Scientific Reports, 12:1–10, 2022.
[163] Mihaela van der Schaar, Ahmed M. Alaa, Andres Floto, Alexander Gimson, Stefan Scholtes, Angela Wood, Eoin McKinney, Daniel Jarrett, Pietro Lio, and Ari Ercole. How artificial intelligence and machine learning can help healthcare systems respond to covid-19. Machine Learning, 110:1–14, 1 2021.
[164] Gael Varoquaux and Veronika Cheplygina. Machine learning for medical imaging: methodological failures and recommendations for the future. npj Digital Medicine, 5, 12 2022.
[165] Luc Vinet and Alexei Zhedanov. A ’missing’ family of classical orthogonal polynomials. Journal of Physics A: Mathematical and Theoretical, 44:1689–1699, 2011.
[166] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-to-video synthesis. 8 2018. 97
[167] Zhihao Wang, Jian Chen, and Steven C.H. Hoi. Deep learning for image super-resolution: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43:3365–3387, 2021.
[168] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Victor Adrian Prisacariu. Nerf: Neural radiance fields without known camera parameters. 2 2021.
[169] Ronald L. Wasserstein, Allen L. Schirm, and Nicole A. Lazar. Moving to a world beyond ”p < 0.05”. American Statistician, 73:1–19, 2019.
[170] Jakob Wasserthal, Manfred Meyer, Hanns-Christian Breit, Joshy Cyriac, Shan Yang, and Martin Segeroth. Totalsegmentator: robust segmentation of 104 anatomical structures in ct images. Radiology: Artificial Intelligence, 2022.
[171] Per Welander, Simon Karlsson, and Anders Eklund. Generative adversarial networks for image-to-image translation on multi-contrast mr images – a comparison of cyclegan and unit. arXiv, 2018.
[172] Jelmer M. Wolterink, Anna M. Dinkla, Mark H.F. Savenije, Peter R. Seevinck, Cornelis A.T. van den Berg, and Ivana Isgum. Deep mr to ct synthesis using unpaired data. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10557 LNCS:14–23, 2017.
[173] Maxim Zaitsev, Julian Maclaren, and Michael Herbst. Motion artifacts in mri: A complex problem with many partial solutions. Journal of Magnetic Resonance Imaging, 42:887–901, 2015.
[174] Jure Zbontar, Florian Knoll, Anuroop Sriram, Tullie Murrell, Zhengnan Huang, Matthew J. Muckley, Aaron Defazio, Ruben Stern, Patricia Johnson, Mary Bruno, Marc Parente, Krzysztof J. Geras, Joe Katsnelson, Hersh Chandarana, Zizhao Zhang, Michal Drozdzal, Adriana Romero, Michael Rabbat, Pascal Vincent, Nafissa Yakubova, James Pinkerton, Duo Wang, Erich Owens, C. Lawrence Zitnick, Michael P. Recht, Daniel K. Sodickson, and Yvonne W. Lui. fastmri: An open dataset and benchmarks for accelerated mri. arXiv, pages 1–35, 2018.
[175] Le Zheng, Oliver Wang, Shiying Hao, Chengyin Ye, Modi Liu, Minjie Xia, Alex N. Sabo, Liliana Markovic, Frank Stearns, Laura Kanov, Karl G. Sylvester, Eric Widen, Doff B. McElhinney, Wei Zhang, 98 Jiayu Liao, and Xuefeng B. Ling. Development of an early-warning system for high-risk patients for suicide attempt using deep learning and electronic health records. Translational Psychiatry, 10, 2020.
[176] Bo Zho, Jeremiah Z. Liu, Bruce R. Rosen, and Matthew S. Rosen. Image reconstruction by domain transform manifold learning. The Cambridge Companion to Kant and Modern Philosophy, pages 28– 30, 2006.
[177] Zhiqin Zhu, Xianyu He, Guanqiu Qi, Yuanyuan Li, Baisen Cong, and Yu Liu. Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal mri. Information Fusion, 91:376–387, 2023.